
Copyright © 1997 by the American Institute of Aeronautics and Astronautics, Inc. No copyright is asserted in the United
States under Title 17, US Code. The US Government has a royalty-free license to exercise all rights under the copyright
claimed herein for Governmental Purposes. All other rights are reserved by the copyright owner.

SIMGRAPH - A FLIGHT SIMULATION DATA VISUALIZATION WORKSTATION

Joseph A. Kaplan
NASA Langley Research Center

Hampton, Virginia

Patrick S. Kenney
UNISYS Corporation
Hampton, Virginia

 Abstract

Today's modern flight simulation research produces vast
amounts of time sensitive data, making a qualitative
analysis of the data difficult while it remains in a
numerical representation. Therefore, a method of
merging related data together and presenting it to the
user in a more comprehensible format is necessary.
Simulation Graphics (SimGraph) is an object-oriented
data visualization software package that presents
simulation data in animated graphical displays for easy
interpretation. Data produced from a flight simulation
is presented by SimGraph in several different formats,
including: 3-Dimensional Views, Cockpit Control
Views, Heads-Up Displays, Strip Charts, and Status
Indicators. SimGraph can accommodate the addition of
new graphical displays to allow the software to be
customized to each user’s particular environment. A
new display can be developed and added to SimGraph
without having to design a new application, allowing
the graphics programmer to focus on the development
of the graphical display. The SimGraph framework can
be reused for a wide variety of visualization tasks.
Although it was created for the flight simulation
facilities at NASA Langley Research Center, SimGraph
can be reconfigured to almost any data visualization
environment. This paper describes the capabilities and
operations of SimGraph.

 Introduction

SimGraph was designed to improve comprehension of
the large amount of data produced from flight
simulation tests in the Flight Simulation Facility at
NASA Langley Research Center (LaRC). Data
produced from the flight simulation is presented by
SimGraph in several different formats; these include 3-
Dimensional Views, Cockpit Control Views, Heads-Up
Displays, Strip Charts, and Status Indicators. Since
these displays may not satisfy all of the needs of the
research community, SimGraph can be easily modified
to accommodate the addition of new graphical displays

into its existing framework with minimal changes,
thereby customizing the software to the users' particular
environment. These graphical displays can be taken
from existing programs and easily integrated into
SimGraph.

 High Level Design

Communication
Manager

Physical
Network

Connections

Communication
Object

Data Recorder
Object

Replay
Object

Data List

Data Package

Data Package

Data Package

Graphics List

Graphics
Object

Graphics
Object

Graphics
Object

Background Loop

Check for Data
Fill Up Data Packages

Check Mode

- OPERATE

- HOLD

- RESET

Figure 1 - High Level Design

The foundation of SimGraph is a C++ object-oriented
framework. This object-oriented framework handles the
communication and data transfer that is standard with all
of the NASA LaRC’s Flight Simulation Facility data
visualization software. The framework has been
thoroughly tested and is continually re-used, thus saving
valuable programming resources. With each use, the
framework is tested again, improving the quality of the
software. The graphical displays, which sometimes are
unique to each simulation, are then inserted into this

2
American Institute of Aeronautics and Astronautics

framework. As new displays are developed, they are
added to an existing library. This library is an
additional source of individual software components that
can either be re-used or slightly modified. For example,
a graphical display showing the cockpit controls of one
fighter aircraft can be easily modified to show the
cockpit controls of another fighter aircraft.

Object-oriented design allows a system to be viewed as
a collection of objects and the interaction between those
objects. This interaction occurs between the objects’
interfaces (Figure 2). The implementation details of the
objects are encapsulated behind the interface. Since the
rest of the program cannot access the implementation
details, all interaction with the object must take place
via the interface. This forces clearly defined interfaces
and aids in designing modular software. If all
connections to an object are through the interface, then
the implementation details of an object may be changed
without affecting the rest of the system as long as the
interface does not change. This simplifies maintenance
of the software since errors within the object can be
corrected without causing errors elsewhere in the
program. The entire object may also be removed and
replaced with another object that has the same interface.

Interface

Data

Implementation
Details

Object

Error in Code

Attempt to Access
Implementation
Details of Object

Figure 2 - Object-Oriented Design

SimGraph was designed to be computer platform
independent in several aspects. It is written entirely in
C++. SimGraph utilizes the X Window System to
manage its graphical displays. The X Window System
runs on a wide variety of computer platforms, ranging
from supercomputers to personal computers. Anything
that can be drawn inside an X Window can be used to
build a graphical display. Several of the displays in
SimGraph were written in the OpenGL graphics
description language. The manner of communication
between the simulation program and SimGraph is also
platform independent. SimGraph can exchange data
with the simulation program using Internet Domain
Sockets, UNIX Domain Sockets, SCRAMNet
Replicated Shared Memory from Systran Corporation,

or the Advanced Real-Time Simulation System
(ARTSS)1, which is the NASA LaRC’s real-time
simulation input/output system. New methods of
communication can be easily integrated into the
program by extending the communication interface,
which is encapsulated within a single object.

 Detailed Design of SimGraph

Communication
Object

Communication
Network

Manager Object

DataRecorder
Object

Replay Object

Figure 3 - Overview of the Communication Object

The Communication Object (Figure 3) is SimGraph’s
link to simulation data. All outside communication,
either with a simulation program or a data file, is
handled by the Communication Object. This includes
both receiving and sending data. During a simulation
run, the user may choose to save the data in a file so the
data can be reviewed at a later date. When reviewing the
data, the Communication Object obtains the simulation
data from a file instead of a connection to the
simulation program.

The Communication Network Manager Object is
SimGraph’s link to the simulation program that
supplies it with data. The user is allowed to select from
several methods of communication. The SimGraph
program uses the same function calls to the Communi-
cation Object regardless of the method of communica-
tion selected by the user. This is possible because all
of the implementation details of the communication
have been encapsulated behind the interface. Adding
new methods of communication is as simple as editing
the Communication Object to handle those methods and
recompiling the program. The rest of the SimGraph
program will not be affected by those changes.

The Data Recorder Object archives the data transferred
between the Communication Object and the Communi-
cation Network Manager Object. The Data Recorder
Object is created when the user requests data to be saved,
recording data from that time forward. SimGraph does
not store any unnecessary or old data because of the

3
American Institute of Aeronautics and Astronautics

amount of memory that would be necessary to
accommodate it.

The Replay Object of SimGraph allows the user to
examine data from a previous SimGraph session. The
data may be viewed at different speeds and directions.
All the information for the displays will be loaded from
a data file instead of being communicated from the
simulation program.

 Data Storage

The next portion of the SimGraph framework is the
Data List (Figure 4). The Data List manages the data
used by the Graphic Objects that are currently being
viewed by the user. Because of the policy used to
manage the data, a particular packet of data will only be
transmitted once, regardless of the number of Graphic
Objects that need it. A Graphic Object can be closed
and the data that corresponds to it will continue to be
transmitted unless it was only in use by that particular
Object.

Data List
1

2

1000

Number of Requests

Pointer to Data Package

Number of Requests

Pointer to Data Package

Number of Requests

Pointer to Data Package

Figure 4 - Diagram of the Data List

The most important function of the Data List is data
parsing (Figure 5). Data is sent from the simulation
program in a large block. This block is the actual
binary data which has been copied into a character array
for transmission. When the Data Block is received by
SimGraph, it is immediately passed to the Data List,
which will parse the data, ensure that it is correct and
has not been corrupted during transit, and break the data
into the individual components for retrieval by the
Graphic Objects.

Number of Packages

Size of Packages

Package ID

Package Size

Number of Packages

Size of Packages

Package ID

Package Size

Package ID

Package Size

Package ID

Package Size

Number of Packages

Size of Packages

Package ID

Package Size

Package ID

Package Size

Package ID

Package Size

Package ID

Package Size

Package ID

Package Size

Number of Packages

Size of Packages

Package ID

Package Size

Number of Packages

Size of Packages

Package ID

Package Size

Package ID

Package Size

Package ID

Package Size

Number of Packages

Size of Packages

Package ID

Package Size

Package ID

Package Size

Package ID

Package Size

Package ID

Package Size

Package ID

Package Size

Figure 5 - Parsing of the Data Block

 Graphic Objects

Graphic Object

X11 Shell

Display ID

Data ID

Update Rate

X11 Display

Open GL 3D
View Object

Heads Up
Display Object

Strip Chart
Object

Mode Display
Object

X11 3D
View Object

Out of the
Cockpit

View Object

Figure 6 - Overview of Graphic Object

The Graphic Object is the cornerstone of SimGraph
(Figure 6). Each display that is shown on the screen is
represented by a Graphic Object. All of the Graphic
Objects in SimGraph are derived from a generic parent
object. This parent object is merely a skeleton of all
the attributes that SimGraph Graphic Objects have in
common.

The Graphic Objects have three methods in common
which correspond to the three simulation states:

4
American Institute of Aeronautics and Astronautics

RESET, HOLD, and OPERATE. The initialize method
is called when the Graphic Object is first created and
during RESET. This routine will initialize all
variables. The initialize method must be set up so that
it can be called multiple times without causing any type
of error (i.e., allocating without de-allocating memory,
creating Widgets without destroying them, etc.). The
second method is the update method, which is called
when the simulation is in OPERATE. The Graphic
Object’s Data Package is sent to the Graphic Object,
along with the size, when this method is called. The
Graphic Object will unpack its data and make its
graphic update appropriately. The third method is the
hold method, which is called when the simulation is in
HOLD.

 Sample Graphic Objects

Figure 7 - Strip Chart Graphic Object

The Strip Chart Graphic Object (Figure 7) was designed
to plot data sent from the simulation program. This
Graphic Object will plot data on its drawing area,
updating the plot whenever new data arrives. The Strip
Chart Object is also capable of displaying multiple
plots of data on the same drawing area. Each plot can
be drawn with a distinctive line pattern to differentiate
the separate plots. The main widget used for this Strip
Chart Graphic Object was provided by Fermi National
Laboratory2.

The Mode Indicator Graphic Object (Figure 8) presents
the user with the current time of the simulation run, the
mode of the simulation, and the number of vehicles
currently in the simulation. The mode the simulation
is in is indicated by a red box. In Figure 8, the
simulation is in Operate.

The OpenGL 3D View Graphic Object (Figure 9) draws
the simulation aircraft in their correct orientation and
allows the user to move the viewpoint around these
aircraft. By moving the viewpoint, the user can gain
new insight into what is actually occurring with the
simulation aircraft. The user can also easily understand
the physical orientation of the vehicles and relative

positions to one another. The OpenGL graphics system
is a software interface to graphics hardware that runs on
multiple platforms3. The software for this display was
originally taken from the VISION software package4.
User configurable ground traces, altitude traces, aircraft
snapshots, and multiple viewpoints are just some of the
new features that have been added.

Figure 8 - Mode Indicator Graphic Object

Figure 9 - OpenGL 3D View Graphic Object

The X Window System 3D View Graphic Object
(Figure 10) was designed as an alternative for the
OpenGL 3D View Graphic Object. The main difference
between the two Graphic Objects is the 3D View

5
American Institute of Aeronautics and Astronautics

Graphic Object utilizes the X Window System for its
drawing routines as opposed to the OpenGL Graphics
Language. While the X Window System does not have
the speed or the complexity of OpenGL, it does run on
a greater number of platforms5. The LibV Graphics
Library used to draw this object was taken from ACM,
a multi-player flight application developed by Riley
Rainey6.

Figure 10 - X Window System 3D View Graphic
Object

Figure 11 - Heads-Up Display Graphic Object

Figure 12 - OpenGL Heads-up Display Graphic Object

The Heads-Up Display (HUD) Graphic Object
(Figures 11 and 12) displays a representative view of
the pilot’s HUD. HUDs typically give information
about the current state of the vehicle, such as heading,
pitch, roll, altitude, and velocity. Additional
information, such as weapon status, fuel state, and rates
of closure to other aircraft, is sometimes included and
can easily be added to the HUD Graphic Object. The
object shown in Figure 11 utilizes the LibV Graphics
Library to draw its information. The object in Figure
12 uses the OpenGL graphics system.

The Out-of-the-Cockpit View (OCV) Graphic Object
(Figure 13) gives the user a representative view of what
the pilot is seeing. The OCV Graphic Object plots the
locations of the simulated vehicles and positions the
eyepoint at one of these locations. The resulting view
is then shown. Two separate OCV Graphic Objects are
available. The Graphic Object shown in Figure 13 is
the OCV-HUD Graphic Object. This object has this
name because a Heads-Up Display is superimposed
upon the OCV View. An additional OCV Graphic
Object is available without the HUD and is referred to
as the OCV Graphic Object. This object also utilizes
the LibV Graphics Library.

6
American Institute of Aeronautics and Astronautics

Figure 13 - Out-of-the-Cockpit View Graphic Object

Figure 14 - OpenGL Cockpit Controls Graphic Object

The Cockpit Controls Graphic Object (Figure 14)
displays a current view of the cockpit controls. The
stick position display has a ten second trace. Some of
the information displayed includes stick, rudder, throttle,
and speed brake positions.

The OpenGL Aspect Circle Graphic Object (Figure 15)
shows the three dimensional perspective view of the
other aircraft involved in the simulation in relation to
the current aircraft. One circle shows the location of the
other aircrafts in vertical relation to the current aircraft
(i.e., are they above or below the current aircraft). The
other circle shows the location of the other aircraft in
horizontal relation to the current aircraft (i.e., are they
to the left or the right of the current aircraft). Both
circles give information regarding whether the other

aircraft are behind or in front of the current aircraft. In
Figure 15, there are two aircraft at the same altitude as
the present aircraft. One is on the right side of the
present aircraft and the other is on the left side.

Figure 15 - OpenGL Aspect Circle Graphic Object

 Graphic List

Graphics List

Pointer to First Object
Pointer to Current Object
Pointer to Previous Object

Holder

Next Holder
Graphic Pointer

Graphic Object

Holder

Next Holder
Graphic Pointer

Graphic Object

Holder

Next Holder
Graphic Pointer

Graphic Object

Holder

Next Holder
Graphic Pointer

Graphic Object

Figure 16 - Overview of Graphics List

The last portion of the SimGraph framework is the
Graphics List (Figure 16). The Graphics List is a
linked list that is composed of Graphic Objects.
Graphic Objects are added to this list when the user
requests a new graphic to be displayed on the screen.

 Data Flow

Figure 17 shows the high level data flow inside of
SimGraph. When the user requests for a new Graphic
Object to be displayed on the screen in step 1, the
interface passes the message to the Communication
Object. The Communication Object transmits the
request to the real time program in step 2. The real-
time simulation program packs the data for the new
Graphic Object along with the data for all of the
previously requested data. In step 4, a new Data Block

7
American Institute of Aeronautics and Astronautics

is sent to the SimGraph Computer. The Communica-
tion Object reads in this Data Block in step 5. The
Data Block is then passed to the Data List to be parsed
and split into individual Data Packages in step 6. Step
7 finishes the data flow when the Graphic List updates
each of the graphics by passing the requested data.

Simulation Computer

Real-Time CPU

Simulation
Program

SimGraph Computer

Read
Data

Communication
Object

Data List

Data
Package

Data
Package

Data
Package

Update

Hold

Reset

User
Input

1

2

3

4

5

6

Data
Block

Graphic List 7

Data
Block

Data
Block

Data Data Data

Data Data Data

Parser

Graphic
Objects

Graphic
Objects

Graphic
Objects

Write
Data

Figure 17 - High Level Data Flow

 User Interface

The first window that is presented to the user is the
Communication Selection Window (Figure 18). This

window allows the method of communication between
SimGraph and the simulation program to be selected.

Figure 18 - Communication Selection Window

If any option other than Replay is selected from the
Communication Selection Window, the Main Option
Window in Figure 19 will be shown. This window
allows the user to save data, open Graphic Objects,
close Graphic Objects, load (or save) User Configura-
tions, and quit the program. This window stays on the
screen for the duration of the SimGraph program.

Figure 19 - Main Option Window

8
American Institute of Aeronautics and Astronautics

The Save Data Button in Figure 19 allows access to the
Save Data Window (Figure 20). This window enables
the user to start or terminate saving data to a file.

Figure 20 - Save Data Window

The Open Graphic Objects Button in Figure 19, when
selected, presents the user with the Open Graphic
Objects Window (Figure 21). The Open Graphic
Objects Window is the only method for the user to
select Graphic Objects to be presented. This window
will change depending upon which Graphic Objects are
available.

Figure 21 - Open Graphic Objects Window

Different actions can occur based upon the Graphic
Object which is selected from the Open Graphic Objects
Window. If the Graphic Object selected depends upon
the number of vehicles in the simulation, a window
similar to the HUD Selection Window (Figure 22) is
presented to the user. In the case of Figure 22, the

simulation has two vehicles in it. If there were four
vehicles in the simulation, the HUD Selection Window
would present the user with four buttons, HUDs for
vehicles one through four. If the Graphic Object does
not show an individual vehicle status but instead
presents information about the entire simulation, such
as the Mode Display, then pressing the button on the
Open Graphic Objects Window would cause that
Graphic Object to be created. Selecting the Strip Chart
Button causes SimGraph to present the user with the
Strip Chart Selection Window (Figure 23). The
window that the user selects from (i.e., the HUD
Selection Window or the Open Graphic Objects
Window) disappears after a button is pressed.

Figure 22 - HUD Selection Window

Figure 23 - Strip Chart Selection Window

The Close Graphic Objects Button on the Main Option
Window (Figure 19) allows the user to access the Close
Graphic Objects Window (Figure 24). The window
presents the user with a list of the Graphic Objects that

9
American Institute of Aeronautics and Astronautics

are currently open. The user can select one of the
Graphic Objects and then select the Close Object
Button. The Graphic Object will be removed from the
screen.

Figure 24 - Close Graphic Objects Window

Selection of the User Configuration option from the
Main Option Window (Figure 19) causes the User
Configuration Window (Figure 25) to be presented to
the user. This window allows the user to save and load
configuration files. These configuration files consist of
the Graphic Objects that are open and their positions on
the screen.

Figure 25 - User Configuration Window

The Replay Button on the Communication Selection
Window (Figure 18) allows the user to examine data
from a previous SimGraph session. The data may be
viewed either forward or backward at various speeds.
All the information for the displays will be loaded from
a data file instead of being transmitted from the
simulation program. After the user selects a data file,

the program replaces the normal menu system with the
Replay Control Window (Figure 26).

Figure 26 - Replay Control Window

If the user wishes to open Graphic Objects to be viewed
during the replay, the Open Button on the Replay
Control Window must be selected. Activating the Open
push-button causes the Open Graphic Object Box
(Figure 27) to appear. The user may then select which
Graphic Objects will be displayed on the screen.

Figure 27 - Open Graphic Object Box

To close an open Graphic Object, the Close Button on
the Replay Control Window must be selected.
Activating the Close Button causes the Close Graphic
Object Box (Figure 28) to appear. The Graphic Objects

10
American Institute of Aeronautics and Astronautics

that are currently open will be shown in the scrollable
list area.

Selecting the Config Button from the Replay Control
Window (Figure 26) will cause the User Configuration
Window (Figure 25) to be displayed. The remaining
buttons on the Replay Control Window dictate how the
data is to be replayed. If Normal is selected, the data
will be replayed in real-time, if possible. If Slow is
selected, the data be shown at one fifth of real-time
speed (i.e., the time between frames will be multiplied
by five). If Fast is selected, the data will be shown as
fast as possible. The next panel of buttons is used to
indicate replay direction. Forward and Backward allow
the user to move through the data in the selected
directions. The bottom panel of buttons allow the user
to begin playing data (Proceed), halt the playing of data
(Stop), and exit SimGraph (Quit). The currently
selected option will be highlighted in red.

Figure 28 - Close Graphic Object Box

 Conclusions

The increasing complexity of modern flight simulation
has created the need for tools to aid in the visualization
of the vast amount of data that is produced. SimGraph
was created to aid users in data interpretation and allow
for rapid modification to handle future requirements.
The modular design of the program allows the user to
pick and choose from a library of graphical displays that
will meet the needs of the research being conducted.

The Graphic Objects discussed were used to evaluate a
prototype SimGraph. The first production model of
SimGraph is to be utilized by the Transport Research
Facilities at NASA Langley Research Center. Several

new Graphic Objects are currently under production for
this simulation.

While this system was specifically designed to work
with the flight simulation software at NASA Langley
Research Center, it is not exclusive to that research
environment. It is possible to use the framework that
was developed and create new Graphic Objects to adapt
the software to individual environments. The authors
welcome inquiries for additional uses of the system.

 References

1. Crawford, D. J.; Cleveland II, Jeff I. “Langley
Advanced Real-Time Simulation (ARTS) System”,
Journal of Aircraft, Volume 25, Number 2, February
1988, Pages 170-177.

2. Edel, Mark. “Histo-Scope Plotting Widget Release
4” ftp://ftp.fnal.gov/pub/histoscope/v4_0/histosgi.tar (4
Feb. 1995)

3. OpenGL Architecture Review Board, OpenGL
 Programming Guide The Official Guide to Learning
 OpenGL, Release 1. Reading, Massachusetts, 1993.

4. Dare, A.; Burley, J. “Pilot/Vehicle Display
Development From Simulation To Flight”, AIAA 92-
4174, August 1992.

5. O’Reilly, Tim; Nye, Adrian X Toolkit Intrinsics
 Programming Manual, Motif Edition, Volume 4 ,
November 1992.

6. Rainey, Riley. “ACM Version 4.8. The Aerial
Combat Simulation for X11”
ftp://ftp.netcom.com/pub/ra/rainey/acm/acm-4.8.tar.gz
(10 Apr. 1997)

